OpenGL ES 实现瘦身大长腿效果

OpenGL ES 实现瘦身大长腿效果

OpenGL小彩虹2021-07-21 3:30:21210A+A-

该原创文章首发于微信公众号:字节流动

cover.gif

实现原理

OpenGL ES 实现瘦身和大长腿效果比较方便,使用纹理映射技术借助于 OpenGL 的图像双线性插值算法可以轻易实现图像的伸缩效果

回顾下前面讲的,什么是纹理?在 OpenGL 中,纹理实际上是一个可以被采样的复杂数据集合,是 GPU 使用的图像数据结构,纹理分为 2D 纹理、 立方图纹理和 3D 纹理。2D 纹理是 OpenGLES 中最常用和最常见的纹理形式,是一个图像数据的二维数组。纹理中的一个单独数据元素称为纹素或纹理像素。

什么是纹理映射?纹理映射就是通过为图元的顶点坐标指定恰当的纹理坐标,通过纹理坐标在纹理图中选定特定的纹理区域,最后通过纹理坐标与顶点的映射关系,将选定的纹理区域映射到指定图元上。

纹理坐标系

渲染坐标系

纹理映射也称为纹理贴图,简单地说就是将纹理坐标(纹理坐标系)所指定的纹理区域,映射到顶点坐标(渲染坐标系或OpenGLES 坐标系)对应的区域。

OpenGL 拉伸的原理我们搞清楚了,还有一个问题需要解决:由于不同手机屏幕的分辨率一般不同,这就导致图片被渲染到屏幕上之后,得到结果图的分辨率不符合我们的预期。

这里我们需要用到 OpenGL 离屏渲染技术,离屏渲染顾名思义,可以让渲染操作不用再渲染到屏幕上,而是渲染到一块离屏缓存中,然后可以使用 glReadPixels 或者 HardwareBuffer 将渲染后的图像数据读出来,从而实现在后台利用 GPU 完成对图像的处理,避免了直接将结果图渲染到屏幕上导致的分辨率问题。

效果实现

实现瘦身大长腿效果使用到的着色器脚本,主要就是实现一个常规的纹理采样。

const char vShaderStr[] =
        "#version 300 es \n"
        "layout(location = 0) in vec4 a_position; \n"
        "layout(location = 1) in vec2 a_texCoord; \n"
        "out vec2 v_texCoord; \n"
        "uniform mat4 u_MVPMatrix; \n"
        "void main() \n"
        "{ \n"
        " gl_Position = u_MVPMatrix * a_position; \n"
        " v_texCoord = a_texCoord; \n"
        "} \n";

const char fShaderStr[] =
        "#version 300 es \n"
        "precision mediump float; \n"
        "in vec2 v_texCoord; \n"
        "layout(location = 0) out vec4 outColor; \n"
        "uniform sampler2D s_TextureMap; \n"
        "void main() \n"
        "{ \n"
        " outColor = texture(s_TextureMap, v_texCoord);\n"
        "}";

瘦身效果实现

瘦身效果

瘦身效果实现是将指定的身体区域映射到一个宽度相对减小的区域,而指定身体区域之外的部分区域保持原来的比例,这样渲染出来图像的身体区域进行了压缩(瘦身)。类似,想实现变胖(拉仇恨)的效果,便是将指定的身体区域映射到一个宽度相对增大的区域。

瘦身原理图

如图所示,为实现瘦身我们使用了 8 个顶点 V0~V7 ,8 个顶点将图像分割成了 6 个三角面片,其中 V2、V3、V4、V5 四个顶点所围成的区域表示要发生形变的区域,箭头方向表示形变的方式是压缩,各个顶点坐标的 x 分量需要偏移 m_dt (根据压缩方向确定正负偏移)。

实现瘦身效果的着色器程序使用的顶点坐标和纹理坐标:

/** 8 points horizontal mode*/
GLfloat vFboVertices[] = {
        -1.0f, 1.0f, 0.0f,
        -1.0f, -1.0f, 0.0f,
        (x1 - m_dt) / (1 + m_dt), -1.0f, 0.0f,
        (x1 - m_dt) / (1 + m_dt), 1.0f, 0.0f,
        (x2 + m_dt) / (1 + m_dt), 1.0f, 0.0f,
        (x2 + m_dt) / (1 + m_dt), -1.0f, 0.0f,
        1.0f, -1.0f, 0.0f,
        1.0f, 1.0f, 0.0f,
};
//fbo 纹理坐标
GLfloat vFboTexCoors[] = {
        0.0f, 0.0f,
        0.0f, 1.0f,
        m_DeformationRect.left, 1.0f,
        m_DeformationRect.left, 0.0f,
        m_DeformationRect.right, 0.0f,
        m_DeformationRect.right, 1.0f,
        1.0f, 1.0f,
        1.0f, 0.0f,
};

其中 m_dt 表示控制瘦身程度的形变因子,m_DeformationRect 表示一个归一化的区域选择框。我们可以在 UI 上调节进度条来控制改变形变程度,滑动选择框来制定形变的区域。

大长腿效果实现

大长腿效果

大长腿效果的实现可以类比瘦身,将指定的腿部区域映射到一个高度相对增大的区域,而指定腿部区域之外的部分区域保持原来的比例,这样渲染出来图像的腿部区域进行了拉伸(大长腿)。类似,想实现小短腿(如果有人用到的话)的效果,便是将指定的身体区域映射到一个高度相对减小的区域(实现压缩)。

大长腿效果实现原理

如图所示,为实现大长腿效果我们同样使用了 8 个顶点 V0~V7 其中 V1、V4、V7、V2 四个顶点所围成的区域表示要发生形变的区域,箭头方向表示形变的方式是拉伸,各个顶点坐标的 y 分量需要偏移 m_dt (根据拉伸方向确定正负偏移)。

实现瘦身效果的着色器程序使用的顶点坐标和纹理坐标:

/** 8 points vertical mode*/
GLfloat vFboVertices[] = {
        -1.0f, 1.0f, 0.0f,
        -1.0f, (y1 + m_dt) / (1 + m_dt), 0.0f,
        1.0f, (y1 + m_dt) / (1 + m_dt), 0.0f,
        1.0f, 1.0f, 0.0f,
        -1.0f, (y2 - m_dt) / (1 + m_dt), 0.0f,
        -1.0f, -1.0f, 0.0f,
        1.0f, -1.0f, 0.0f,
        1.0f, (y2 - m_dt) / (1 + m_dt), 0.0f,
};
//fbo 纹理坐标
GLfloat vFboTexCoors[] = {
        0.0f, 0.0f,
        0.0f, m_DeformationRect.top,
        1.0f, m_DeformationRect.top,
        1.0f, 0.0f,
        0.0f, m_DeformationRect.bottom,
        0.0f, 1.0f,
        1.0f, 1.0f,
        1.0f, m_DeformationRect.bottom,
};

不同的是,大长腿效果的实现是竖直方向上的拉伸,而瘦身的实现是水平方向上的拉伸。另外还需注意的是,我们对图片进行拉伸或者缩放之后,结果图的实际尺寸会发生改变,所以每次调整形变后,都需要为离屏渲染的帧缓冲区对象 FBO 绑定对应新尺寸的纹理作为颜色附着。

//由于图像尺寸改变,删除旧纹理
if (m_FboTextureId) {
    glDeleteTextures(1, &m_FboTextureId);
}
//生成新纹理
glGenTextures(1, &m_FboTextureId);
glBindTexture(GL_TEXTURE_2D, m_FboTextureId);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, GL_NONE);

glBindFramebuffer(GL_FRAMEBUFFER, m_FboId);
glBindTexture(GL_TEXTURE_2D, m_FboTextureId);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_FboTextureId,
                       0);
//判断是水平拉伸还是竖直拉伸,然后按照新图像的尺寸初始化纹理
if (m_bIsVerticalMode) {
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_RenderImg.width,
                 static_cast<GLsizei>(m_RenderImg.height * (1 + m_dt)), 0, GL_RGBA,
                 GL_UNSIGNED_BYTE, nullptr);
} else {
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
                 static_cast<GLsizei>(m_RenderImg.width * (1 + m_dt)),
                 m_RenderImg.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
}
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) {
    LOGCATE("MyGLRender::InitBuffers glCheckFramebufferStatus status != GL_FRAMEBUFFER_COMPLETE");
}
glBindTexture(GL_TEXTURE_2D, GL_NONE);
glBindFramebuffer(GL_FRAMEBUFFER, GL_NONE);

离屏渲染时,由于图像尺寸发生改变,这个也需要对视口进行调整:

//判断是水平拉伸还是竖直拉伸,设置视口大小
if (m_bIsVerticalMode) {
    glViewport(0, 0, static_cast<GLsizei>(m_RenderImg.width),
               static_cast<GLsizei>(m_RenderImg.height * (1 + m_dt)));
} else {
    glViewport(0, 0, static_cast<GLsizei>(m_RenderImg.width * (1 + m_dt)),
               static_cast<GLsizei>(m_RenderImg.height));
}

与 AI 算法结合

AI 算法检测的人体

我们现在是手动指定形变区域实现瘦身和大长腿效果,但是如果与身体关键点检测算法一起使用,我们便可以省去手动操作这一步,拿到身体的关键点(算法检测结果)便可以计算出人体及各个部位的区域,按照类似的原理我们还可以实现瘦腰、瘦腿、丰胸等效果,我们后续将与 AI 算法结合来开发更加丰富的功能。

联系与交流

我的公众号

点击这里复制本文地址 以上内容由权冠洲的博客整理呈现,请务必在转载分享时注明本文地址!如对内容有疑问,请联系我们,谢谢!

支持Ctrl+Enter提交

联系我们| 本站介绍| 留言建议 | 交换友链 | 域名展示
本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除

权冠洲的博客 © All Rights Reserved.  Copyright quanguanzhou.top All Rights Reserved
苏公网安备 32030302000848号   苏ICP备20033101号-1
本网站由 提供CDN/云存储服务

联系我们